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The zeros of the Meixner polynomial mn(x; ;, c) are real, distinct, and lie in
(0, �). Let :n, s denote the s th zero of mn(n:; ;, c), counted from the right; and let
:� n, s denote the sth zero of mn(n:; ;, c), counted from the left. For each fixed s,
asymptotic formulas are obtained for both :n, s and :� n, s , as n � �. � 1999 Academic Press

1. INTRODUCTION

One of the major topics in the study of orthogonal polynomials is
investigating the properties of their zeros. While a considerable amount of
literature already exists on the zeros of classical orthogonal polynomials of
Hermite, Laguerre, and Jacobi (see, e.g., [12]), not much is known about
the zeros of the non-classical polynomials such as Charlier C (a)

n (x), Meixner
mn(x; ;, c), Pollaczek Pn(a, b; x), and Meixner�Pollaczek Mn(x; ', $). An
asymptotic formula for the zeros of the Pollaczek polynomial was first
given by Novikoff [9] in 1954, but the problem of finding the second term
in the asymptotic expansion of these zeros was settled only very recently;
see [2, 5]. In 1992, Ismail and Li [7] presented an upper bound for the
largest zero, and a lower bound for the smallest zero, of the Meixner�
Pollaczek polynomial, and also gave an upper bound for the largest zero
of the Meixner polynomial. More recently, Chen and Ismail [3] obtained
bounds for these zeros which are sharp for large n; see also [6]. As regards
the Charlier polynomial, practically nothing is known about its zeros.
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In this paper, we are concerned with the zeros of the Meixner polyno-
mial mn(n:; ;, c), where 0<:<�. First, let :n, s denote its sth zero, counted
in descending order,

0<:n, n<:n, n&1< } } } <:n, 2<:n, 1<�. (1.1)

We shall show that for each fixed s we have

:n, s=
1+- c

1&- c
+

c1�6(1+- c)1�3

1&- c

as

n2�3+O \1
n+ (1.2)

as n � �, where as is the sth negative zero of the Airy function Ai(x).
Next, let :� n, s denote the s th zero of mn(n:; ;, c), counted in ascending
order,

0<:� n, 1<:� n, 2< } } } <:� n, n&1<:� n, n<�. (1.3)

Clearly, we have

:� n, s=:n, n&s+1 , s=1, ..., n. (1.4)

We shall also show that for each s,

:� n, s=
s&1

n
+an exponentially small error. (1.5)

Numerical values of :� n, s (see Tables 1�4) match closely the approximate
values obtained from (1.5).

2. BEHAVIOR OF THE LARGE ZEROS

To derive the asymptotic formula in (1.2), we first recall a uniform
asymptotic approximation of mn(n:; ;, c) given in [8]. Let U(a, x) denote
the Weber parabolic cylinder function [10, p. 687], and put

Vn(x)=ex2�4U(&n& 1
2 , x). (2.1)

Note that Vn(x) can be expressed in terms of the Hermite polynomial; in
fact, we have Vn(x)=2&n�2Hn(x�- 2); see [11, p. 259]. Consider the
functions

G(w, :, c)=: log \1&
w
c+&: log(1&w)&log(&w) (2.2)
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and

9(u, ')=&log u+'u&
u2

2
. (2.3)

Clearly, G(w, :, c) and 9(u, ') have the saddle points

w\=
1+c+ac&:+- (1+c+:c&:)2&4c

2
(2.4)

and

u\=
'\- '2&4

2
, (2.5)

respectively. In [8], it has been proved that the system of nonlinear equations

{G(w+ , :, c)=9(u& , ')+#,
G(w& , :, c)=9(u+ , ')+#

(2.6)

has a unique solution (', #) for :�1&b, where

0<b<min {1
2

,
2 - c

1+- c= ,

and furthermore, 2�'<� when :+�:<� and &2+$�'<2 when
1&b�:<:+ , where

:+=
1+- c

1&- c
(2.7)

and $ is a positive number depending on b and c. Also, it has been shown
that the function u=u(w, :) defined by

G(w, :, c)=9(u, ')+# (2.8)

is one-to-one and analytic in the w-plane except possibly on the cut along
the positive real axis, and is bounded and analytic near the origin. Set

h(u)=
u

w(1&w);

dw
du

. (2.9)

From (2.7), we have

h(u)=
(c&w)(u&u+)(u&u&)

(w&w+)(w&w&)(1&w);&1 . (2.10)
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One of the two major results in [8] is the uniform asymptotic approximation

mn(n:; ;, c)=(&1)n nn�2en# _Vn(' - n) a0+
1

- n
V$n(' - n) b0+=1& , (2.11)

where

|=1 |�
M1

n
|Vn(' - n)|+

N1

n3�2 |V$n(' - n)|. (2.12)

The constants M1 and N1 are independent of n and : for : # [1&b, M],
and M can be any fixed large number. The coefficients a0 and b0 are given
explicitly by

a0=
u&h(u+)&u+h(u&)

u&&u+

, (2.13)

b0=
h(u&)&h(u+)

u&&u+

. (2.14)

From the asymptotic behavior of the parabolic cylinder function given
by Olver [10], it is readily seen that

Vn(' - n) a0+
1

- n
V$n(' - n) b0

has no zero when '�2 and n is sufficiently large; see also the asymptotic
formulas of Vn(' - n) and V$n(' - n)�- n given in [8, Section 6]. (Since
'�2 corresponds to :�:+ , we can conclude that mn(n:; ;, c) has no zero
when :�:+ and n is sufficiently large; cf. [7, Theorem 6].) We may there-
fore restrict ourselves to the case '<2. Let us now consider the behavior
of Vn(' - n) and V$n(' - n) when n2�3('&2) is bounded and does not tend
to zero; i.e., there exist positive numbers \ and $ such that &\<n2�3('&2)
<&$. It will be seen later in this section that it suffices to establish (1.2)
under these restrictions. From [10, pp. 152�153], we have

U \&
1
2

+2, +t - 2+=2 - ? +1�3g(+) \ `
t2&1+

1�4

_[Ai(+4�3`)+Ai $(+4�3`) +&8�3B0(`)] } [1+O(+&4)]

(2.15)
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and

U$ \&
1
2

+2, +t - 2+=- 2? +2�3g(+) \ `
t2&1+

&1�4

_[Ai $(+4�3`)+Ai(+4�3`) +&4�3C0(`)] } [1+O(+&4)]

(2.16)

as + � +�, uniformly with respect to t�&1+_>&1 (see [10, p. 158]),
where

2
3 `3�2= 1

2 t - t2&1& 1
2 log(t+- t2&1), (2.17)

g(+)=2&(1�4) +2&(1�4)e&(1�4) +2+ (1�2) +2&(1�2)[1+O(+&2)], (2.18)

`1�2B0(`)= & 1
24 (t3&6t)(t2&1)&3�2& 5

48 `&3�2, (2.19)

`&1�2C0(`)= & 1
24 (t3+6t)(t2&1)&3�2+ 7

48 `&3�2. (2.20)

From (2.19) and (2.20), it can be shown that

B0(`)t& 9
280 21�3 and C0(`)t& 1

20 22�3, as t � 1+. (2.21)

Let

+=- 2n+1 and t=' � n
4n+2

. (2.22)

It is easily verified that

t&1= 1
2 ('&2)+O(n&1), as t � 1+. (2.23)

Since n2�3('&2) is bounded, it follows that

t&1=O(n&2�3), as t � 1+. (2.24)

Combining (2.17), (2.23), and (2.24) gives

`=21�3(t&1)+O((t&1)2)=O(n&2�3), (2.25)

\ `
t2&1+

1�4

=2&1�6+O(n&2�3), (2.26)

and

+4�3`=n2�3('&2)+O(n&1�3). (2.27)
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Substituting (2.26) and (2.27) into (2.15) and (2.16), we obtain

U(&1
2 +2, +t - 2)=- 2? e&n�2n(n�2)+(1�6)[Ai(n2�3('&2))+O(n&1�3)],

(2.28)

U$(&1
2 +2, +t - 2)=- 2? e&n�2n(n�2)+(1�3)[Ai $(n2�3('&2))+O(n&1�3)].

(2.29)

From (2.1), it follows that

Vn(' - n)=- 2? en(('2�4)&(1�2))n(n�2)+(1�6)[Ai(n2�3('&2))+O(n&1�3)],

(2.30)

1

- n
V$n(' - n)=- 2? en(('2�4)&(1�2)n(n�2)+(1�6) _Ai(n2�3('&2))

'
2

+O(n&1�3)& ,

(2.31)

as n � � and n2�3('&2) bounded ('<2). We may therefore rewrite (2.11)
in the form

mn(n:; ;, c)=(&1)n nn+(1�6)en#
- 2? en(('2�4)&(1�2))

__Ai(n2�3('&2)) \a0+
'
2

b0++=2& , (2.32)

where by (2.12)

=2=O(n&1�3)+O(n&1)=O(n&1�3). (2.33)

Note that from (2.5), we have

a0+
'
2

b0 ta0+\'
2

&
- '2&4

2 + b0=a0+b0 u& , as ' � 2&.

Hence, on account of (2.13) and (2.14), we get

a0+
'
2

b0 t
u& h(u+)&u+ h(u&)

u&&u+

+
h(u&)&h(u+)

u&&u+

u&=h(u&),

which in turn yields

a0+
'
2

b0 tc&1�6(1+- c)(2�3)&; (2.34)
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by using (2.9). It is now evident that a0+('�2) b0 �% 0. Therefore, (2.32) can
be further rewritten as

mn(n:; ;, c)=(&1)n nn+(1�6)en#
- 2? en(('2�4)&(1�2))

_\a0+
'
2

b0 + [Ai (n2�3('&2))+=2]. (2.35)

The asymptotic approximation in (1.2) is obtained from (2.35). To do
this, we first recall the following result of Hethcote [4]:

Lemma 1. In the interval [a&\, a+\], suppose f (t)= g(t)+=(t), where
f (t) is continuous, g(t) is differentiable, g(a)=0, m=min| g$(t)|>0, and

E=max|=(t)|<min[ | g(a&\)|, | g(a+\)|]. (2.36)

Then there exists a zero c of f (t) in the interval such that

|c&a|�
E
m

. (2.37)

We next study the behavior of ', when : is given by

:=:++n&2�3a=
1+- c

1&- c
+n&2�3a, (2.38)

where a is a bounded real parameter independent of n. Substituting (2.38)
into (2.4), we have

w+=&- c+c1�4(1&c)1�2 a1�2n&1�3+b2n&2�3+b3 n&1+O(n&4�3),

where b2 and b3 depend on a but are independent of n. With this value
of w+ , (2.2) gives

G(w+ , :, c)=&
1+:

2
log c&

2
3

(1+- c)&1�2

_c&1�4(1&- c)3�2 a3�2n&1+O(n&4�3).

In the same manner, it follows that

G(w& , :, c)=&
1+:

2
log c+

2
3

(1+- c)&1�2

_c&1�4(1&- c)3�2 a3�2n&1+O(n&4�3).
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Subtracting the two equations in (2.6) and using the above values of
G(w+ , :, c) and G(w& , :, c), we obtain

&
4
3

(1+- c)&1�2 c&1�4(1&- c)3�2 a3�2n&1+O(n&4�3)

=&2 \log
'&- '2&4

2
+

' - '2&4
4 + . (2.39)

On the other hand, inserting (2.22) into (2.17) yields

2
3

`3�2=
1
2 _log

'&- '2&4
2

+
'
4

- '2&4&+O(n&4�3). (2.40)

Coupling (2.39) and (2.40), we get

2
3

`3�2=
1
3

(1+- c)&1�2 c&1�4(1&- c)3�2 a3�2n&1+O(n&4�3).

By (2.23) and (2.25),

`=2&2�3('&2)+O(n&1)

and hence

n2�3('&2)=(1+- c)&1�3 c&1�6(1&- c) a+O(n&1�3), (2.41)

when : is given by (2.38).

Theorem 1. Let :n, s be the sth zero of the Meixner polynomial mn(n:; ;, c),
arranged in descending order given in (1.1), and let as denote the sth negative
zero of the Airy function Ai(x). Then

:n, s=
1+- c

1&- c
+

c1�6(1+- c)1�3

1&- c

as

n2�3+O \1
n+ (2.42)

as n � �; i.e., formula (1.2) holds.

Proof. From (2.35) and (2.41), we have

mn(n:; ;, c)=(&1)n nn+(1�6)en#
- 2? en(('2�4)&(1�2)) \a0+

'
2

b0+
_[Ai[(1+- c)&1�3 c&1�6(1&- c) a]+=~ ], (2.43)
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where

=~ =O(n&1�3) uniformly in : (2.44)

and : is given in (2.38). Let

f (:)=(&1)n n&n&(1�6)e&n#(2?)&1�2 en((1�2)&('2�4)) \a0+
'
2

b0+
&1

mn(n:; ;, c),

g(:)=Ai _(1+- c)&1�3 c&1�6(1&- c) \:&
1+- c

1&- c+ n2�3& ,

and =(:)==~ . Then (2.43) becomes

f (:)= g(:)+=(:).

Note that for : given in (2.38), we have min| g$(:)|�cn2�3 for some c>0.
Formula (2.42) now follows from Lemma 1. K

Remark 1. Recall that in the derivation of (2.30) and (2.31), we have
restricted ourselves to the case in which '<2 and n2�3('&2) is bounded
away from zero. Since as is negative for all s=1, 2, ..., it is readily seen from
(2.41) that this restriction is reasonable.

3. UNIFORM ASYMPTOTICS NEAR :=0

To state the other major result in [8], we consider the functions

F(w, :, c)=: log \1&
w
c+&: log(1&w)&log w (3.1)

and

8(u, ')=&: log u+'u& 1
2 u2. (3.2)

The saddle points of F(w, :, c) and 8(u, ') occur at

w\=
1+c+:c&:\- (1+c+:c&:)2&4c

2
(3.3)

and

u\=
'\- '2&4:

2
, (3.4)
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respectively. In [8], it has been established that the system of nonlinear
equations

{F(w+ , :, c)=8(u+ , ')+#
F(w& , :, c)=8(u& , ')+#

(3.5)

has a unique solution (', #) for 0<:�1+a, where

0<a<:+&1=
2 - c

1&- c
,

and furthermore that '< &2 - : when 0<:�:& and &2 - :�'�
2 - :&$0 when :&<:�1+a, where

:&=
1&- c

1+- c
(3.6)

and $ is a positive number depending only on the values of a and c. It has
also been proved that the function u=u(w, :) defined by

F(w, :, c)=8(u, ')+# (3.7)

is one-to-one and analytic in the w-plane except possibly on the cut along
the negative real axis, and is bounded and analytic near the origin. As in
(2.9) and (2.10), we again set

h(u)=
u

(1&u);

dw
du

=
(c&w)(u&u+)(u&u&)

(w&w+)(w&w&)(1&w);&1 .

The second major result in [8] is the uniform asymptotic approximation

1
n !

mn(n:; ;, c)

=
1

1(n:+1)
nn:�2en# _Wn(- n ') a0+

1

- n
W$(- n ') b0+=1& , (3.8)

where

Wn(x)=ex2�4U(&n:& 1
2 , x) (3.9)

and

|=1 |�
M1

n
|Wn(- n ')|+

N1

n3�2 |W$n(- n ')|. (3.10)
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The constants M1 and N1 are independent of n and : # [=, 1+a], and =
can be any fixed small number. The coefficients a0 and b0 are given explicitly
by

a0=
u&h(u+)&u+h(u&)

u&&u+

, (3.11)

b0=
h(u&)&h(u+)

u&&u+

. (3.12)

In this section, we shall show that the approximation (3.8) actually holds
uniformly for 0<:�1+a; i.e., the constants M1 and N1 in (3.10) are
independent of : # (0, 1+a]. First, we need the following result.

Lemma 2. Let (', #) be the unique solution of the system of nonlinear
equations (3.5) for 0<:�1+a. As : � 0+, we have

'=&(&2 log c+2: log :)1�2+O(:) (3.13)

and

#=:[log(1&c)&log c& 1
2 log 2& 1

2 log(&log c)]+O(:2). (3.14)

Proof. From (3.3), we have

w+=1&:&
c:2

1&c
+O(:3)

and

w&=c+c:+
c:2

1&c
+O(:3).

Substituting these into (3.5) yields

&:?i+: \1+log
1&c

c +&: log :+O(:2)

=&: log u++'u+&
u2

+

2
+# (3.15)

and

:?i&log c&:[1+log(1&c)]+: log :+O(:2)

=&: log u&+'u&&
u2

&

2
+#.
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Subtracting the last two equations, we get

log c&2: log :+: _2+log
(1&c)2

c &+O(:2)

=&: log
'+- '2&4:

'&- '2&4:
+

1
2

' - '2&4:. (3.16)

We claim that ' is bounded away from zero as : approaches the origin.
We shall prove this by contradiction, and hence assume that there exists a
sequence of positive numbers :n tending to zero such that its corresponding
values 'n satisfy

&
1
n

<'n<0. (3.17)

Since 0<:<:& corresponds to &�<'< &2 - :, (3.17) implies

:n<
1

4n2 . (3.18)

From (3.16), we have

log c+O(:n log :n)

=:n log(4:n)&2:n log(&'n&- '2
n&4:n )+ 1

2'n - '2
n&4:n . (3.19)

For sufficiently large n, the left-hand side of (3.19) is in absolute value
greater than 1

2 |log c|. On the other hand, by (3.17) the right-hand side of
(3.19) is dominated by

:n |log(4:n)|+2:n |log(&'n&- '2
n&4:n )|+

1
2n2 .

Therefore, :n |log(&'n&- '2
n&4:n )| is bounded away from zero as n � �;

that is, there exists a constant K>0 such that

|log(&'n&- '2
n&4:n )|�

K
:n

�4Kn2; see (3.18). (3.20)

We shall now show that this is impossible. First we note that

|log(&'n&- '2
n&4:n )|�|log(&'n)|+ } log \1&�1&

4:n

'2
n +} . (3.21)

292 JIN AND WONG



Next we observe that since 'n<&2 - :n , we always have :n<(1�4) '2
n and

hence log :n<2 log(&'n), i.e.,

|log :n |>2 |log(&'n)|. (3.22)

If :n�'2
n �% 0, then the second term on the right-hand side of (3.21) is bounded

as n � �. From (3.20) and (3.21), it follows that

K
:n

�
1
2

|log :n |+O(1),

which is impossible. If :n �'2
n � 0, then the second term on the right-hand

side of (3.21) is equal to

log \2:n

'2
n

+
2:2

n

'4
n

+ } } } +=log 2+log :n&2 log(&'n)

+log _1+
:n

'2
n

+O \:2
n

'3
n+& .

Thus, from (3.21) and (3.22), we obtain

log(&'n&- '2
n&4:n )=O(log :n),

which again contradicts (3.20). Therefore the assumption that there exists
a sequence 'n tending to zero (see (3.17)) is incorrect, and our claim is
established. Let d be the negative number such that &�<'<d for all
sufficiently small :>0. Equation (3.16) then gives

log c&2: log :+: _2+log
(1&c)2

c &+O(:2)

=&: log :+2: log(&')&
'2

2
+:+O(:2);

see the argument for (3.19). This, in turn, yields

'=&(&2 log c)1�2+O(: log :) as : � 0+,

or, more precisely, (3.13). The asymptotic formula (3.14) is obtained by
substituting (3.13) into (3.15). This completes the proof of Lemma 2. K

We now return to the approximation (3.8). To show that (3.8) in fact
holds uniformly for : # (0, 1+a], we must show that the constants M1 and
N1 in (3.10) are independent of : in (0, 1+a]. Since (3.10) has already
been established for : # [=, 1+a], =>0, we need consider only the case
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when : is sufficiently small. Let us divide our discussion into two separate
case: (i) :=o(1) but n: is unbounded, and (ii) n: is bounded.

In case (i), n2�3('2&4:) is unbounded, as n � �, by virtue of (3.13). In
case (ii), we also have :=o(1) and, as a consequence, ' is bounded away
from 0 and n2�3('2&4:) � �. Hence, both cases are subsumed under
case (I) in [8, Eq. (6.36)]. Therefore, as in [8, Eq. (6.37)], we obtain

=1 t
1
n

1(n:+1)

- 2?
n&(n:�2)&(1�2) } ('2&4:)&1�4 } en(('2�4)+(:�2))

_{en(&: log((&'+- '2&4:)�2)&('�4) - '2&4:)[&2 sin(:n?) h1(u&)]

_\&'+- '2&4:
2 +

&1�2

+en(&: log((&'&- '2&4:)�2)+('�4) - '2&4:)

_[2 cos(:n?) h1(u+)] \&'&- '2&4:
2 +

&1�2

= . (3.23)

(The only difference between this result and (6.37) in [8] is that here we
have not applied Stirling's formula to 1(n:+1). This is because n: is bounded
in the present case.) Since

&: log
&'+- '2&4:

2
&

'
4

- '2&4:=&
'
4

- '2&4:+O(:)

and

&: log
&'&- '2&4:

2
+

'
4

- '2&4:=
'
4

- '2&4:+O(: log :)

as : � 0+, from (3.23) it can be shown that

=1=O \1
n

n&(n:�2)&(1�2)e(n�2) '2+ . (3.24)

On the other hand, we have from [10, p. 133]

U(a, &z)=e&i?(a+(1�2))z&a&(1�2)e&(1�4) z2
[1+O( |z| &2)]

+
- 2?

1(a+ 1
2)

za&(1�2)e(1�4) z2
[1+O( |z| &2)].
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With a=&n:& 1
2 and z=&- n', we obtain from (3.9)

Wn(' - n)= &�2
?

1(n:+1) n&(n:�2)&(1�2)e(n�2) '2
(&')&n:&1

_[sin(n:?)+O(nn:+(1�2)e&(n�2) '2
)] _1+O \1

n+& , (3.25)

where use has been made of the identity 1(x) 1(1&x)=?�sin ?x. In view
of the recurrence relation

U$(a, z)= 1
2zU(a, z)&U(a&1, z),

we also have

1

- n
W$n(' - n)=&�2

?
1(n:+1) n&(n:�2)&(1�2)e(n�2) '2

(&')&n:

_[sin(n:?)+O(nn:+(1�2)e&(n�2) '2
)] _1+O \1

n+& . (3.26)

Since Wn(x) and W$n(x) do not have common zeros and n: is bounded, a
combination of (3.24), (3.25), and (3.26) establishes the validity of (3.10),
uniformly for : near the origin; i.e., the constants M1 and N1 in (3.10) are
independent of n and : # (0, =], =>0.

4. BEHAVIOR OF THE SMALL ZEROS

Substituting (3.25) and (3.26) into (3.8), we obtain

1
n !

mn(n:; ;, c)=�2
?

n&1�2(&')&n:&1en#+(n�2) '2

_[(&a0&'b0) sin n:?+=~ ][1+O(n&1)], (4.1)

where

=~ =O(nn:+(1�2)e&(n�2) '2
). (4.2)

This result holds uniformly in :, as long as n: is bounded. Let :� n, s denote
the s th zero of mn(n:; ;, c), counted from the left; see (1.3). An asymptotic
approximation for the zeros :� n, s will be derived from (4.1)�(4.2) by using
Lemma 1. Before proceeding, we first recall the following well-known result
[12, p. 44].
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Lemma 3. The zeros of the Meixner polynomial mn(x; ;, c) are real,
distinct, and lie in (0, �).

Returning to (4.1), we let

f (:)=
1
n ! \

n?
2 +

1�2

e&n#&(n�2) '2
(&')n:+1

_mn(n:; ;, c)(&a0&'b0)&1 [1+O(n&1)]&1, (4.3)

g(:)=sin n:?, and

=(:)==~ =O(nn:+(1�2)e&(n�2) '2
) (4.4)

so that (4.1) becomes

f (:)= g(:)+=(:). (4.5)

Since ' is negative and bounded away from zero, we have

a0+'b0 ta0+
'&- '2&4:

2
b0=a0+b0u&=h(u&). (4.6)

Using the equation preceding (3.8), it can be shown that

h(u&)t
&(&2 log c)1�2

c(1&c); \ :
1&:+

1�2

. (4.7)

Since n: is bounded, by Lemma 1 we obtain the following anticipated
result.

Theorem 2. Let :� n, s be the sth zero of the Meixner polynomial mn(n:; ;, c),
arranged in ascending order given in (1.3). We have

:� n, s=
s&1

n
+O(nd&(1�2)e&(n�2) '2

), (4.8)

as n � �, where d is a constant.

It is interesting to note that the first term on the right-hand side of (4.8)
is independent of the parameters ; and c. However, we should bear in
mind that this formula is valid only when n is sufficiently large. Tables I
and II show excellent agreement between the numerical and approximate
values of :� n, s when ;=1.25, c=0.25, and s is small. On the contrary,
Table III gives a very poor comparison when ;=5, c=0.75, and n=30,
but the comparison improves when n becomes bigger. Table IV shows that
an agreement is reached in this case when n=150.
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TABLE I

Values of :� n, s When ;=1.25, c=0.25, and n=10

s Numerical values Approximate values

1 0.12610215_10&5 0
2 0.10016500 0.1
3 0.20368203 0.2

TABLE II

Values of :� n, s When ;=1.25, c=0.25, and n=20

s Numerical values Approximate values

1 0.14590754_10&11 0
2 0.50000000_10&1 0.05
3 0.10000013 0.1
4 0.15000677 0.15
5 0.20015030 0.2

TABLE III

Values of :� n, s When ;=5, c=0.75, and n=30

s Numerical values Approximate values

1 0.46487151_10&2 0
2 0.58457839_10&1 0.03333333
3 0.13167135 0.06666666

TABLE IV

Values of :� n, s When ;=5, c=0.75, and n=150

s Numerical values Approximate values

1 0.35763984_10&14 0
2 0.00666666 0.00666666
3 0.01333333 0.01333333
4 0.02000000 0.02
5 0.02666683 0.02666666
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The result in Theorem 2 can be strengthened to allow s to depend on n.
Indeed, it can be shown that for any fixed 0<=<:& , there exits a positive
number a, depending on =, such that

:� n, s=
s&1

n
+O(e&an), as n � �, (4.9)

for s=1, 2, ..., #+1, where #=[n(:&&=)].
To see this, we now let s grow with n since (4.9) has already been estab-

lished in Theorem 2 when s is fixed. First, we recall the results (6.38) and
(6.39) given in [8], namely,

Wn(- n ')=nn:�2:n:+(1�2)en(('2�4)&(:�2))('2&4:)&1�4

_{&2(sin :?n) en(&: log((&'+- '2&4:)�2)&('�4) - '2&4:)

_\&'+- '2&4:
2 +

&1�2

[1+O(n&1)]

+(cos :?n) en(&: log((&'&- '2&4:)�2)+('�4) - '2&4:)

_\&'&- '2&4:
2 +

&1�2

[1+O(n&1)]= (4.10)

and

W$n(- n ')=- n nn:�2:n:+(1�2)en(('2�4)&(:�2))('2&4:)&1�4

_{2(sin :?n) en(&: log((&'+- '2&4:)�2)&('�4) - '2&4:)

_\&'+- '2&4:
2 +

1�2

[1+O(n&1)]

&(cos :?n) en(&: log((&'&- '2&4:)�2)+('�4) - '2&4:)

_\&'&- '2&4:
2 +

1�2

[1+O(n&1)]= (4.11)

as n � �; see also [10, p. 157]. These results hold uniformly with respect
to : as long as :=O(1) and n: � �. (Note that we have now let s grow
with n.) Next, we set

h\(:)#&: log
&'\- '2&4:

2
�

'
4

- '2&4:+: log - :. (4.12)
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We shall show that for : # (0, :&&=], there is a positive number =0 ,
depending on = and c, such that

h+(:)>=0 and h&(:)<&=0 . (4.13)

If :=O(1), then ' � &- &2 log c by Lemma 2. Hence

h+(:)t
'2

4
t&

1
2

log c>0. (4.14)

If : is bounded away from zero, then we may without loss of generality
assume : # [=, :&&=]. By introducing the new variable t=&'�2 - :, we
have

h+(:)=:[&log(t+- t2&1)+t - t2&1]#:k(t). (4.15)

For =�:�:&&=, it can be found in the proof of Theorem 2 in [8] that
there
exists a positive number $0 , depending on = and c, such that '�&2 - :&$0 .
Hence, there is a positive number _, depending on = and c, such that t�1+_.
Since k$(t)=2 - t2&1>0, we obtain from (4.15)

h+(:)�=k(t)�=k(1+_)#=0 (4.16)

for : # [=, :&&=]. The first inequality in (4.13) now follows from (4.14)
and (4.16). In view of the identity h&(:)=&h+(:), the second inequality
in (4.13) is also proved.

By using (4.13), we obtain from (4.10) and (4.11)

Wn(- n ')

=&2nn:�2:n:+(1�2)en(('2�4)&(:�2))('2&4:)&1�4 \&'+- '2&4:
2 +

&1�2

_[1+O(n&1)] en(&: log((&'+- '2&4:)�2)&('�4) - '2&4:)

_[sin n?:+O(e&2=0n } :&1�2)] (4.17)

and

W$n(- n ')

=2n(n:�2)+(1�2):n:+(1�2)en(('2�4)&(:�2))('2&4:)&1�4 \&'+- '2&4:
2 +

1�2

_[1+O(n&1)] en(&: log((&'+- '2&4:)�2)&('�4) - '2&4:)

_[sin n?:+O(e&2=0n)], (4.18)
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respectively. Substituting (4.17) and (4.18) into (3.8) gives

1
n !

mn(n:; ;, c)

=
2nn:

1(n:+1)
en#:n:+(1�2)en(('2�4)&(:�2))('2&4:)&1�4 [1+O(n&1)]

_en(&: log((&'+- '2&4:)�2)&('�4) - '2&4:) \&'+- '2&4:
2 +

&1�2

__&a0+b0 \&'+- '2&4:
2 +& [sin n?:+O(:&1�2e&2=0n)]

(4.19)

as n � �, uniformly for 0<:<:&&=. In view of (4.6) and (4.7), it is
readily seen that (4.19) yields an equation similar to (4.5), thus establishing
(4.9).
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